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Abstract 

This paper provides a review of P acquisition strategies by cotton plants. Except for excretion of phosphatase 

enzymes, the cotton plant lacks the ability to manipulate its rhizosphere chemistry, and to mobilize non-

labile inorganic P sources. Phosphorus acquisition by cotton plants mainly depends on root exploration of 

relatively labile inorganic P and organic P sources from the surface and subsurface soil layers. Root 

morphological traits, such as increased root to shoot ratio or AM associations, would result in a high root 

absorbing surface area. Subsoil P sources could be accessed by cotton plant over time possibly due to the 

water stress encountered at the topsoil, and the presence of roots in the subsoil. The role that mycorrhizae 

play with cotton plants in Vertosol soils is worthy of future investigation. 
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Introduction 

Cotton (Gossypium hirsutum L.) production is an important agricultural industry in Australia. Lint yields 

from flood-irrigated cotton crops have increased steadily over the past 25 years and impose a high demand 

for nutrients (Rochester 2007). Although cotton lint is composed of primarily cellulose, considerable 

amounts of nutrients can be removed with cotton seed (Dorahy et al. 2004; Rochester and Peoples 1998). In 

Australia, cotton production requires regular P fertilizer inputs (~ 20 kg P/ha) in order to maintain soil P 

fertility and high lint yields, especially in the last 25 years (Dorahy et al. 2004). Nevertheless, the response 

of cotton to P fertilizers is unpredictable and frequently low. Dorahy et al. (2004) reported that only 3 out of 

17 cotton field sites in Australia showed increases in lint yield from P fertilizer application. In addition, the 

reported critical Colwell P concentration for cotton in Vertosols varies from 6 to 12 mg/kg (Dorahy et al. 

2004; Hibberd et al. 1990), which is much lower than those for wheat (21 mg/kg) and barley (18 mg/kg) on 

similar soils with low P sorption capacity (Reuter et al. 1995). This suggests that cotton may be able to 

access P from stable soil P pools. Such knowledge on P acquisition characteristics of cotton would increase 

our understanding of P responses by cotton to P fertilizers. This paper reviews possible root strategies 

adopted by cotton plants in their P acquisition from the soil. 

 

Root morphological and physiological traits 

Carboxylates and proton release 

Significant exudation of carboxylates was not detected in the rhizosphere of cotton in response to P 

deficiency (Wang et al. 2008). Proton efflux of cotton plant is frequently related to the N uptake as NH4
+
 

rather than insufficient P supply. For example, Hylander et al. (1999) reported a greater rhizosphere 

acidification of cotton than maize and soybean when N source was applied as NH4NO3. In the case of NO3
- 

as the sole N sources, alkalization of the rhizosphere by cotton was detected irrespective of shoot P status 

(Wang unpublished data). In addition, cotton was not superior in using sparingly soluble P sources such as 

Al, Fe and Ca phosphates, when compared with both wheat and white lupin (Wang unpublished data). It 

appears that cotton plants lack the ability to manipulate its rhizosphere chemistry and to mobilize non-labile 

inorganic P sources, in terms of both carboxylate and proton release. Nevertheless, the enhanced acid and 

alkaline phosphatase activity in the rhizosphere of cotton could promote the utilization of P from soil organic 

pools, as demonstrated by the concurrent depletion of NaOH-extractable organic P (NaOH-Po) in the 

rhizosphere soil (Wang et al. 2008; Figure 1). While Dorahy et al. (2004) found a strong correlation between 

relative P uptake of cotton and Al- and Fe fraction of soil P in a field experiment, these pools in Vertosols 

normally represent P weakly absorbed with Al and Fe oxides (Holford and Mattingly 1975; Soils and Torrent 

1989).  
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Root to shoot ratio 

Like many species, P stress causes a preferential distribution of dry matter and P content to the roots of 

cotton (Gill et al. 2005; Maqsood et al. 2005; Wang et al. 2008). Indeed, P-deficient cotton plants can retain 

35% of total P in its roots, compared with only 14% in P-sufficient cotton (Ahmad et al. 2001). Cotton plants 

have the peak consumption of P later in the growing season (first peak bloom) when the root system is fully 

developed (Schwab et al. 2000), which possibly indicates that P acquisition of cotton mainly depends on its 

root morphological exploration of labile P sources. Ahmad et al. (2001) also found that the tolerance of 

cotton genotypes to P deficiency was due to their efficiency in absorption of soluble P and P utilization for 

biomass synthesis. Thus, the greater allocation of assimilates to root growth due to P stress by cotton could 

confer a significant advantage in soluble P acquisition by cotton. 
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Figure 1.  Changes in acid and alkaline phosphatase activity, and concentration of NaOH-Po with distance from 

the root mat of cotton with 0 and 20 mg/kg P application. For each panel, the vertical bar indicate the LSD 

(P=0.05) for the treatment × distance interaction (Wang et al. 2008). 

 

AM fungi 

Cotton crops grown in Australian are known to be well infected with arbuscular mycorrhizae (AM) fungi 

(Rich and Bird 1974). The external hyphae of AM fungi contribute to an increased P uptake due to an 

increased surface area for absorption and decreased distance for P diffusion (Bolan 1991; Schnepf et al. 

2008). Poor P uptake of cotton on virgin soil in tropical Australia had been related to the lack of an 

association with AM (Duggan et al. 2008). Graham and Syvertson (1985) suggested that plant species like 

cotton with less branched and coarse root systems could be highly dependent on mycorrhizal association for 

P acquisition compared to that of species with finely branched roots.  

 

Hydraulic lift 

As a tropical species, cotton is normally cultivated in warm to hot climates. Rapid drying of furrow-irrigated 

soils due to evaporation is quite common under cotton production (Muchow and Keating 1998; Singh et al. 

2006). Redistribution of water from wet subsoil layers into drier topsoil through plant root systems, a 

phenomenon known as hydraulic lift, could be a desirable strategy for P acquisition by cotton plants from 

surface soil that experienced frequent dryness. Hydraulic lift would enhance shallow root survival and P 

availability at the topsoil (Bauerle et al. 2008; Huang 1999). By using gamma densitometry, Baker and van 

Bavel (1988) detected an overnight movement of water from wet to dry soil through the cotton root system. 

Wang et al. (2009) also demonstrated the occurrence of hydraulic lift by cotton plant grown on a Vertosol. 

Nevertheless, the detected hydraulic lift did not aid P uptake from the drying topsoil (Wang et al. 2009). 

Higher root mortality and lower P diffusion rate in the Vertosol, compared with sandy soil, could account for 

the negligible P uptake from water-stressed surface soil (Wang et al. 2009). 

 

Phosphorus acquisition depth 
Top soil  

The cotton seedlings had been reported to derive most of its P from the fertilizer band applied to the top  

10 cm layer (Dorahy et al. 2008). Nevertheless, at a later growth stage (36 days after sowing), soil P pools 

beyond the fertilizer band showed a significant contribution (more than 90%) to the total P uptake by cotton 

(Dorahy et al. 2008). Poor responsiveness of cotton to shallow P placement had been attributed to the 

decreased soil moisture at the topsoil (Hibberd et al. 1990; Singh et al. 2005), which is in consistent with 

findings from Wang et al. (2009) that P uptake from the Vertosol was strictly regulated by its soil water 

content.  
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Subsoil 

Approximately half of the root system of the cotton plant lies below the surface 15 cm soil layer (Schwab et 

al. 2000). Under frequent drought conditions, seed cotton yield in northern Australia showed a significant 

increase (17%-67%) to the P applied in subsurface (10-15 and 25-30 cm deep) over that applied at shallow 

depth (7-10 cm) (Singh et al. 2005). In addition, subsoil P pools e.g. residual and total organic P, showed a 

depletion following long-term cotton cropping (Wang unpublished data, Figure 2). Exploration of subsoil P 

by cotton roots may act as an important root morphological adaptation to the water stress-induced 

unpredictable availability of P at the topsoil. The contribution of subsoil P sources to plant P uptake would 

depend on many factors, including the moisture level of the topsoil, soil texture and the presence of root and 

P sources in the subsoil (Kuhlmann and Baumgartel 1991; Wang et al. 2007; Wang et al. 2009). Deep P 

placement is effective in increasing cotton yield under field conditions possibly because of an enhanced 

contact between root and fertilizer during the later stages of growth, and also a sustained P availability under 

periodic surface drought conditions.  
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Figure 2.  Residual and total organic P concentration (mg/kg) pooled from three sites cultivated with continuous 

cotton for more than 20 years, and from adjacent three virgin sites, at soil depth of 0-5, 5-10, 10-20, 20-30, 30-45 

and 45-60 cm on a Vertosol in northern NSW and southern Queensland. Bars are LSD values at P=0.05 (Wang 

unpublished data). 

 

Conclusion 

Evidences suggest that P acquisition by cotton plants mainly depends on its ability to access relatively labile 

inorganic P, and organic P from both topsoil and subsoil layers. In this respect, the role that mycorrhizae play 

with cotton plants in Vertosol soils is worthy of future investigation. Routine soil P tests using alkaline 

bicarbonate extraction solution (Colwell P) on soil samples collected from the topsoil layers (above 10 cm) 

do not adequately estimate P responsiveness of cotton to the application of P fertilizers. Low responsiveness 

of cotton to P fertilizers applied in the soil with low soil test values would indicate that cotton was able to 

meet their P requirement from the P pools not defined by bicarbonate extractants, such as organic P and 

subsoil P sources, without the need for P fertilizers. 
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